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A k-variate Bernoulli distribution with k+ 1 parameters is obtained
as a shock model in which shocks are fatal to single components only or
to all components simultaneously in a k-component system. The maximum
likelihood estimator for model parameters is fully characterized. A
simple iterative scheme is investigated, and it is shown that the scheme

converges to the MLE for any seed in an interval whose endpoints depend

only on the obgerved sample.

I. INTRODUCTION

Let ZO,ZI,...,Zk be independent Bernoulli variables, each with its

own parameter p,, i=0,...,k. Let

Y, = mln(Zo,Zi) i=1,...,k,

i

and consider the distribution of the random vector 3 - (Yl,..., k).
This distribution is a (k+1)-parameter submodel of the multivariate
Bernoulli distributions studied in Boyles and Samaniego (1980). This
paper is dedicated to maximum likelihood estimation for this submodel,
henceforth to be denoted by MVB(k+1).

The model MVB(k+ 1) can be motivated as follows: Suppose a k
component system may be subjected to two kind# of shocks during an
observation period of length T,. A shock of type 1 is fatal to a TFor

single component and has no effect on other components. Define

0 if shock fatal to component

7 = 1 occurs by time To

1 otherwise.

Ui




A shock of type 2 is simultaneously fatal to all components. Define

0 if universal shock
occurs by time To

1 otherwise.

and define

P, = P(Z, = 1), 1=0,1,...,k.

Then Yi- 1 1f and only 1if no shock fatal to component { occurs by time
'l‘o. The model above may be viewed as a discrete analogue of the submodel
of Marshall and Olkin's (1967) multivariate exponential (MVE) distribu-
tion with single and universal shocks only. This submodel of the MVE
distribution has been studied extensively by Proschan and Sullo (1976).
The general multivariate Bernoulli model studied in Boyles and
Samn'niego (1980) 'postulates the existence of 2k- 1 shocks, each selectively
fatal to a particular subset of the k components of the system. Maxi-
mum likelihood estimation for the general model poses substantial analy-
tical difficulties, and is an unsolved end perhaps intractable problem.
In Boyles and Samaniego (1980), the invariance property of MLE's is used
to produce an asymptotically optimal estimator that is in fact equal to
the MLE with limiting probability one. The submodel considered in this
paper is the only MVB shock model we have examined in which the MLE itself
can’ be fully characterized. The MVB(k +1) distribution thus has the

following characteristics: (1) It is a model for random vectors with




positively dependent components, (2) its parameter space is of relatively
low dimension (k+1 instead of Zk- 1 for the general model), permitting
efficient estimation with moderate sample sizes, (3) it is a reasonable
model in experiments where the primary or only cause of simultaneous
failure of components is a catastrophic or universal shock, (4) maximum
likelihood estimation is fully tractable. Because of these characteristics,
the authors feel that the model merits the separate detailed study pre-

sented in this paper.

In Section 11, we characterize the MLE of the parameters of
MVB(k+ 1), showing that in the most complex case, the MLE is a simple
function of the smallest root of a certain kth degree polynomial. 1In
Section III, we give a simple iterative scheme which converges quickly

to the desired root.

II. MAXIMUM LIKELIHOOD ESTIMATION

- Suppose a sample of size n is taken from MVB(k+1). The likelihood

function for the sample is given by

k N T-N
T .n-T i i
L = py Q, 1'-'1 p; (1-p)) (2.1)

vhere k
Q = P¥ = 0} = 1-poft - TTC1-pp),

Te=4# times Y ¥ 0

N, = # times Yt =1 (1=1,2,...,k).

Note that

k
max(N,,...,N} < T < EIN

T (2.2)

D P R . % . - PRFE S A PR e, .. i, 52 prinsre i ssiitel [ s !




B S g - poriised e e

T . . R e

If T=0 then N, =0 ¥ i so (2.1) becomes L-Qo" which is maximized

by Qo = 1, Since
k
Q= 1-py{2 -'Tl;u-pin (2.3)
{=

we maximize L in this case by taking either

Po =0, Py arbitrary (i=1,...,k)

or

~ ~ A

Po arbitrary, Py =Py = ... ®p " 0.

Now assume 0<'1‘-N1 and N2 -N3- -Nk-o. (2.1) becomes
N, n-N; N, ,Jﬁ. N,

It is evident from (2.3) that, for any fixed values of Pq and Py Qo is
maximized by setting P,"Py=... -pk-O. Thus (2.4) is maximized for

fixed Po and P, by setting p,=... ’pk-o. We are left with

N n~-N N N n-N
1 1 1 - 1 1
L= po Qo Pl (Popl) (1 Popl) ,

so that in this case (2.1) is maximized by any choice of

(pO'Pl""'pk) €[o0,1] satisfying

A A

-l
PoP; " M1

-~ ~

pz-..'-pk.OO

Suppose now that T > 0, Nl > 0,...,N)e > 0, N)"+1 - .= Nk =0

vhere 2 < £ < k. For any fixed Po*Pys- 2P, Ve maximize Qo by setting

Pppp = o0 = Py = 0. In this case

N k

i T
(I'P ) »
: 1-q+1 i

L N T-
T neT 1
L=py Q [']I; p, (1-p,)




80 we maximize L (for fixed po,pl,..,,p‘c) by setting Pogp ™o+ =P ™ 0.

Having done this we are left with the task of maximizing (2.1) subject to

k=£>2,T>0, N1 > 0""’“!. > 0. Thus, without loss of generality,

we assume k > 2, T > O, N1 >0, N2 > 0,...,Nk> 0 in the remainder of

this paper.
From (2.1) it can be shown that the likelihood equatioms

L . (1=0,1,...,k)
2p,

are equivalent to the system

k
Ho - Po{l - ]-';(I'Pi)]

My = PyPo (2.5)

M = PPo

where . = n~!t and My = n-lNl (i=1,...,k). Solutions of (2.5) are in

one-to-one correspondence with solutions of

k

Setting x-pal we see that solutions of (2.5) are in one-to-one corres-

pondence with solutions of

k

1-pgx = ';[_];(1 “uX). (2.6)




Note that, because of (2.2) and our standing assumptions (Ni >0 ¥ 1)

we have
k
min{l:leﬂi} 2 Ho 2 “(k) - mx{lvlls oo ’Hk}

and 2.7)

By ™ nin{p,,....} > 0.

A

Lemma , The system (2.5) has a solution ;:-(po,;l,,,,,;k) € [o,ljk*l

1£ff (2.6) has a solution x € [l,p.alj. Moreover, p € (0,1)k+1

1).

iff

x € (llua

Proof. We already know that solutions of (2.5) are in one-to-one

correspondence with solutions of (2.6). Assume p € [0,1]k+1. Then

~ k ~ A
Mo = Poll -':ﬂ;(l-pl)} <Py sl

80 X = pal € [l,pal'] and solves (2.6). Conversely, if x € [1,;181] then

"~

Py = x! € [uo,lj c [0,1] and, since

0<u; <Hg <Py
we have P = “'19(-)1 € [0,1] for i=1,...,k.
The verification of the second statement is the same, bll:t we will
include it for completeness., Assume p € (0,1)k+1. Then F]T(I'Pi) >0
~

{=1
8o

k
Mo = Poll - :"'1(1'1’1)3 <py<l

o e s




and x = pal € (l,ual). Conversely, if x € (l,p,(')l) then posx-IE(uo,l)c (0,1)

and, since

-~

0 <uy SHy <Py

LY A-l
we have Py = WP, € (0,1). This completes the proof of the lemma.

Define
k

| hex) = T (Q-po. (2.8)
1 1=1

h 1is a kth degree polynomial with roots pil,...,pl:l. Moreover

k
- M
. o) = 1, hagh = Ta-2) »o,
‘ 1=1 Ho

| and h> 0 on (-O,pz;’)). For x <“-('lt) we have

k
h'(x) ==Zp, || Q-ux) <0
_ 1=1 ! 541 }

k
W) = 2 T o "II'(1-u x) > 0.
t=1 31 T3 gy 4
1

k
! In particular h'(0) = - bp By < "o * slope of line y'l-po . This
i=]

| l1ine and the curve y=h(x) intersect at x=0, If h'(0)=- Ho Ve have

h(x) > 1-pgx for all x € (O,p'('i)]. (In this case h" > 0 forces

H;;) > Hal-) If h'(0) < - Mg the line y=1-u.x and the curve y=h(x)
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intersect at exactly one point x € (O,u'('lt)]. In fact, we have

Py _1 -1 =1
x € (0,|,;0 ], since l-pox <0 for x > g while h > 0 on (-w,p(k)).

In spite of the picture, we are not excluding the possibility that
-1

= -1 :
Ho “(k)’ or that x < 1. In fact, we have
) "
x>1 1iff ';]]'1(1-.41) = h(1) < 1-y,. (2.9)

k L)
Assume now that Tr(l-ui) > l-uo, i.e., x€[0,1). By the lemma,
i=1

the likelihood equations have no root in [O,IJHI, so we seek to maximize

L over the boundary of [0,1]k+1. Now since N, >0 ¥ 1 and T > 0, we

i
see from (2.1) that L=0 on the faces [9100] for 1=0,1,...,k. On

the other hand, since

x
1-u, >':|:|'1(1-u1) > 1=y,
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we have p.j <po - '.!.‘-NJ >0 (j=1,...,k). Thus L=0 on the faces

{pi-l}, i=1,...,k. On {po'l} we have

k n-T K N T-N
ve {TTa-2p} '1TI;p£‘ (1-p)

Thus the MLE in this case is given by

~» "~

Pp=1, by =0 N (1=1,...,K). (2.10)
k -~
Now assume 1’1:(1'"’1) < l-p.o, i.e., x € [1""'(-)1]' We will show that
that the MLE in this case is given by
a ~1 .

Py =x ", p = “"1x (i=1,...,k). (2.11)

We first consider the likelihood function (2.1) as a function T of

x € [l,p,al], i.e., we examine its values along the curve
{ "1 . ‘1
(x .“lx’ e ’pkx) . 1 S X S uo }

in [0,1]“1. First let x € (1,951). Then we have




k n-T
t(x) = x-T{ l-x-l[ 1 -?Il(l -u.ix):]}

i

| k N T-N

i
. || B,x) "(1-p.x)
P By

k n~T

x=-1+ ” (l-p.ix) k N N
-n i=1 i n=Ny
= x X ”(pix) (l-p.ix)
. i=1
“ Tr(l'ﬂix)
! i=]

] . l-p k W l-p,yn
R S BICT R R

1

£(x) mn “fn z(x)

= - x+ (1-pg)in[x-1+h(x)]

K
] + Zin (1-px)

k
= (l-p)onh(x) + T u,in
ko By [ 1=1

by
{=1 1-pyx

= -nx+ (1 -po)m[x-l-o-h(x)]

k T
i
* bg fn h(x) + 12_)1“1”’"[ l-uix]'

Differentiating, we obtain




11

g | , 1 (L=pdll+h' ()] poh'(x)
, . L'(x) = «x "+ x-1+ h(x) + b (x)

k u»
+x-12 [1-1 x]'
1=1 By

Since
{
| k
= h'(x) = - 2 p, Tr(l-uj!t)
¥ i=1 = J#i
| k By
= = h(x) b2
' 1=1 l-p.ix:]
' we have
! (Q-p)[1+h'(x)] h'(x)
I U = -1 0 - -1
) = -x ey kg ) 15
h(x) + (.l-uox)h'(x) (l-po)[1+h'(x)]
== xh(x) + x~-1+ h(x)
h(x) =h'(x)(x-1)

=[Q-pgx) -] G x-1+h(x)]

Since h(x) > 0, h'(x) < 0, and x~1 > 0 for x 6(1,981) we see that

>0 h(x) < l-pox

2'(x) 18 =0 1££ h(x) = l-u.ox

<0 h(x) > 1-pgx




If x € (1,p)) this means

>0 l<x<x
2'(x) is = 0 1ff x-;
<0 ;<x<u;1
1f ::-1, we have
1

L'(x) <0 'O‘XE(I,p,;).

>

If x = u(—)l , we have

£ >0 ¥ x€ (Luh.

Since g(x) is continuous, we have shown that

l(;) = sup . L(x), L(;) > 4(x) for x ¢ x .
x€[1,ugY

Consequently,

a

7.(;) - sup 1L(x), Z(;) > 'f:(;) for x # x .
xefl»v-;l]

Now consider L on the boundary of [0,1]k+1. Since T,N, > 0 ¥1i
L=0 on {pi-O}, 1=0,1,...,k. On {py=1] we know from (2.10) that the

maximum value of L 1s given by

n=-N 1

k N
Ma™n) fa-n"lv)
1e1

- T(1).

° . ,.<-—w-nzvrﬂmm‘ o
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Now consider the face [pj-l] for some j=1,...,k. If T-N,> 0 then

3
L=0 on {pj-l]. 1f T-N.‘l = 0, then
k
N T=-N
- T(1- n-T i.._ i
L = p, (1-py) El’i a-py 1
i#)
so the maximum value is obtained by evaluating L at
S M | (1=1,...,k) (2.12)
po » pi. T 2 ey .

L=

(since T - 1). The maximum value is

o A - N N

L(ponpli"')pk) - LCR-IT, 'El ,...,"TL)

LY

*1 Pk
- L@o’ “0’.”""0)

- 'f(ual) .

If x € (l,u.al) the likelihood equations have a unique root

p € (0,1)*"), where p is given by (2.11). Since

L(p)= Teo) > max{T(1),Laugh)

L achieves its maximum in (O,I)kﬂ. By uniqueness, R is the MLE.

" )
If x=1, L has no root tn (0,1)*'l. If p 1s given by (2.11),

L@ =T = 1w > Tagh.




Thus p maximizes L on the boundary of [0,1]k+1, 8o

is the MLE,

o>

is given by (2.11)

to»

If x = p,al, L has no root in (0,1)k+1. If

PN ~ . ~ ~

L(p) = L(x) = L(ual) > L(1).

Thus p maximizes L on the boundary of [0,1]k+1, so p is the MLE.

This completes the proof that p given by (2.11) is the MLE in the
k -~

case 1T(1-u.1) < l-po.
i=1

The following table gives the complete description of the MLE p of

the MVB(k+1) parameter p .

-~ A

po-O, Py arbitrary (i=1,...,k)

~ "~ ~

Py arbitrary, Py =--.®P = )

where ;: is the unique solution in
-1

tl,p ] of lepax = 11 (l=y,X)
0 0 (=1 i

' A A -1 "~
Nj = T, Ni = ( (1L ¢ ) PoPJ n Nj’ Pi 0 (1#.’)
L
o
o | TTawp >,
% 1-1 ~N ~ -1
: Po=1» Py=n N, (i=1,...,k)
. - -
2 2 | G gD
-y
z VI
>0 |9 :' . ey - )
z o Il:“"ﬂz)ﬁl'“o Pp=%x » pg=xn N, (i=1,...,k)
)
A
={
=

(“ t.n- 1“ 1 . “o-n- IT)
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III. AN ITERATIVE SCHEME CONVERGING TO THE MLE

In the following discussion, we exclude those data configuations for

which p can be computed explicitly. In other words, we assume the

following:

(1) T>O0, N1>0,...,Nk>0
k

an  Tla-pp <1-p, ERY)
i=1

(111) T > max{Nl. ce ,Nk] .

We have shown (but perhaps not stated explicitly) that under (1) and (ii)

the equation

k
lepgx = ” (l-u‘_x) (3.2)
i=]

has a unique solution x € (l,p.al]. If, in addition, we assume (iii),

then

L 1
”(l-p, ) > 0
=1 1¥o

since gy > p, (i=1,2,...,k). Thus, (3.2) is not satisfied by x = u;l»
80 ; € (1,;;61). On the othar hand, if (1ii) fails then we have
T-Nj =0 => l-pjpal = 0 for some j, so (3.2) is satisfied by

X = pal, hence x = “81 by uniqueness.




The result of these considerations is that (3.1) is equivalent to

x € (l,g,;l'), hence the situation described in (3.1) is precisely that in

which we have no explicit formula for x, hence no explicit formula for p.

We now give a simple fterative solution of (3.2) under conditions (3.1).

Let x(? ¢ [l,u.al] and define

1 K
| ™ eyt Tla-ux™)
B - pal{l - h(x® Dy (3.3)

for m=1,2,3,.... Figure II below indicates graphically how the iterative

scheme proceeds.

Figure II

" (m) ~

Theorem. x -~ X 88 M= @,

e Proof. 1f ;(0) - ; then ;(m) = x ¥m and we are done. Assume

()

< x. Recall that




k

h(x) = :‘Tu - ) (1 <x<pg)
=1

~

e e e gaio R . .. B s ot it il i PN
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~
and that h'<0 on [l,u,ol]. Since x(o) < x we have, by the

definition of x(l), that
1 -u,ox(o) > h(x(o)) =1 -p.ox(]‘).

Moreover, by definition of x we have

1-p°;(1) e hx®) > h(x) = 1-pgx .

Hence
@ <x® o,
Now assume
2O XD ™ oy,
By (3.4) and the definition of x™1), we have
2@ b G®) - gy 2D,

| BoX
Moreover, by definition of x we have

1-px ™D o ™) > h(x) = Loy x.

Hence

2 D g

NS Y R YN PRI e I WY 1 e

(3.4)
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vhich proves (3.4) with m replaced by m+1, We have now proven by
induction that {x(m) :m=0,1,...} 18 a bounded increasing sequence. Let

y= 1lim ;(m).

M= @

Then, by the continuity of h, we have

y = lim x™
meo

. lim pal{l-h(;(m-l))]

m-— o

- ug {1-h(»)
or
- k
1-p,y = Tfl'(l “p-
i=

Thus y=x, as required.
ﬂ(o) ~

Now assume x > x. The proof is essentially the same as in the

preceding case, but we include it for completeness. We have

Lopr©@ < nG @y w1y m D

and
1-,.0;(1) = hx(?) <h@ = 1-pgx,
hence
x < xM < x@

DA R A T ey
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Now assume

; < ;(m) < ... < ;(1) < ;(0).
Then .-1
Lopge™ <n®) = 1oz 1
and |
1 -p.o;(n"l) = hx™) < hex) = 1 '"o;‘ , 5
hence

< x@® Lm0 (1) 2(00)

This proves by induction that [x(m)] 18 decreasing and bounded below. Let

y = lim x(m). Then we show as before that y=x. This completes the
me=—e
proof.

For any fixed n, define the estimates p(m) (m=0,1,2,...) by

P . if (3.1) does not hold
;(m) - ~

~

ax™71, “1;(“'),..,,““;(“)) i€ (3.1) holds.

Corollary. For any fixed n, p(m) -p a.s., (m=w),

The proof consists of quoting the preceding theorem.

Two 1likely candidates for ;c(o) are 1 and p;l. It would be useful to

develop some criteria for deciding which ;(0) to use. Also, the first

"
iterate p(l) might be worthy of study,
~
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